4 Biomedical Signal Transceivers
نویسندگان
چکیده
With the growing costs of healthcare, the need for mobile health monitoring devices is critical. A wireless transceiver provides a cost effective way to transmit biomedical signals to the various personal electronic devices, such as computers, cellular devices, and other mobile devices. Different kinds of biomedical signals can be processed and transmitted by these devices, including electroencephalograph (EEG), electrocardiograph (ECG), and electromyography (EMG). By utilizing wireless transmission, the user gains freedom to connect with fewer constraints to their personal devices to view and monitor their health condition. In this chapter, in the first few sections, we will introduce the reader with the basic design of the biomedical transceivers and some of the design issues. In the subsequent sections, we will be presenting design challenges for wireless transceivers, specially using a common wireless protocol Bluetooth. Furthermore, we will share our experience of implementing a biomedical transceiver for ECG signals and processing them. We conclude the discussion with current trends and future work. The information that is being presented is meant to be applied for all types of biomedical signals. However, some examples are reserved to one type of biomedical signal for simplicity. In this case, the example of an ECG signal and device is used. Even though some sections of the chapter rely heavy on this example, the concepts explored in this chapter can still be extrapolated for other biomedical signals.
منابع مشابه
The Signal and Noise Analysis of Direct Conversion EHM Transceivers
A direct conversion modulator-demodulator with even harmonic mixers with emphasis on noise analysis is presented. The circuits consist of even harmonic mixers (EHMs) realized with antiparallel diode pairs (APDPs). We evaluate the different levels of I/Q imbalances and DC offsets and use signal space concepts to analyze the bit error rate (BER) of the proposed transceiver using M-ary QAM schemes...
متن کاملBER Performance Evaluation of Different Digital Modulation Schemes for Biomedical Signal Transceivers under AWGN and Fading Channel Conditions
The RF transceivers play an important role in the wireless medical monitoring system. Compared to the conventional RF transceiver, the transceiver in medical sensor nodes has more stringent constraints in terms of power consumption, size limitation and the quality of transmission. Digital modulation schemes used in the wireless transceivers plays an important role in the performance of the tran...
متن کاملLow Power Wireless Communication and Signal Processing Circuits for Distributed Microsensors
Low power wireless sensor networks provide a new monitoring and control capability for civil and military applications in transportation, manufacturing, biomedical technology, environmental management, and safety and security systems. Low power integrated CMOS systems are being developed for microsensors, signal processors, microcontrollers, communication transceivers and network access control...
متن کاملAdaptive Data Rates for Flexible Transceivers in Optical Networks
Efforts towards commercializing higher-speed optical transmission have demonstrated the need for advanced modulation formats, several of which require similar transceiver hardware architecture. Adaptive transceivers can be built to have a number of possible operational configurations selected by software. Such software-defined transceiver configurations can create specific modulation formats to...
متن کاملDesign of Nonuniform Filter Bank Transceivers for Frequency Selective Channels
In recent years, there has been considerable interest in the theory and design of filter bank transceivers due to their superior frequency response. In many applications, it is desired to have transceivers that can support multiple services with different incoming data rates and different quality-of-service requirements. Tomeet these requirements, we can either do resource allocation or design ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012